
Off-Chain Native Bitcoin: A Mathematical
Framework for the Overpass Protocol

Brandon "Cryptskii" Ramsay
info@overpass.network

December 15, 2024

Abstract

We present Overpass Channels, a novel Layer 2 protocol for Bitcoin that
achieves true off-chain value representation through a dual proof system archi-
tecture. The protocol maintains separate and independent systems for token
state verification (bridge system) and ownership rights (ownership system), en-
abling optimal efficiency in off-chain transfers while preserving rigorous secu-
rity guarantees for bridged assets. By utilizing threshold cryptography, stealth
addresses, and decoy share obfuscation, Overpass Channels ensures a decen-
tralized, trustless environment without the need for traditional validators. The
protocol’s key management and decentralized movement mechanisms are de-
signed to enhance scalability, privacy, and security, setting a new standard for
Bitcoin’s Layer 2 solutions.

Contents
1 Introduction 3

1.1 Core Contributions . 4
1.2 Paper Organization . 4

2 Mathematical Framework 5
2.1 Foundational Definitions . 5
2.2 System Independence . 6
2.3 Bridge System Properties . 6
2.4 Ownership System Properties . 6
2.5 Global State Composition . 6

1

3 Bridge System Architecture 7
3.1 Floating Pool Mechanism . 7
3.2 Epoch Management . 8
3.3 Movement Protocol . 8
3.4 Bridge State Verification . 8

4 Ownership System Architecture 9
4.1 Value Representation . 9
4.2 Transfer Operations . 9
4.3 Unilateral Updates . 9
4.4 State Verification Circuit . 10
4.5 Perfect Fungibility . 10

5 Key Management and Decentralized Storage 12
5.1 Secret Sharing with Decoy Shares . 12
5.2 Stealth Addresses and Encrypted Share Storage 15
5.3 Decoy Share Obfuscation . 15
5.4 Reconstruction Protocol . 16
5.5 Decentralized Reconstruction with Stealth Addresses 16

6 Economic Incentives 17
6.1 Fee Distribution Model . 17
6.2 Floating Address Costs and Treasury Allocation 18
6.3 Trustless Storage Node Operation . 18
6.4 Economic Sustainability . 18

7 System Interaction 18
7.1 Global State Invariant . 18
7.2 Synchronization Points . 18
7.3 Independent Operation . 18

8 Security Analysis 19
8.1 Threat Model . 19
8.2 Bridge System Security . 19
8.3 Ownership System Security . 19
8.4 Compositional Security . 19
8.5 Synchronization Security . 19
8.6 Zero-Knowledge Properties . 19

2

9 Equivalence of Overpass and Native Bitcoin Security 20
9.1 Implications of Equivalence . 20

10 Conclusion 20

1 Introduction
Bitcoin’s fundamental role as a decentralized and secure medium of exchange is
constrained by inherent limitations in scalability and transaction throughput. Pre-
vious Layer 2 solutions have attempted to address these limitations through various
mechanisms but often introduce compromises between security, efficiency, and trust
assumptions. We present Overpass Channels, a novel approach that maintains sepa-
rate proof systems for bridged token state verification and ownership rights, enabling
optimal performance in both domains without sacrificing security guarantees.

Our key insight is that bridge operations and value transfers serve fundamentally
different purposes and can be handled by independent proof systems:

• Bridge State Proofs: Track the location and balance of Layer 1 Bitcoin
bridged to Overpass through a floating pool architecture and epoch-based se-
curity model.

• Value Ownership Proofs: Represent pure ownership rights through mathe-
matical proofs that enable efficient, unilateral transfers.

This separation allows each system to optimize for its specific requirements:

1. The bridge system maintains rigorous token state verification through:

• Epoch-bound pool management.

• Dynamic address generation.

• Cryptographic bridged state proofs.

• Temporal security guarantees.

2. The ownership system achieves optimal efficiency through:

• Pure mathematical proofs.

• Unilateral state updates.

• Perfect fungibility.

3

• Instant finality.

Narrative Summary: Bitcoin is known for its security and decentralization, but
it cannot easily scale to handle a large volume of transactions quickly and cheaply.
Layer 2 solutions aim to improve scalability by moving many operations off the main
Bitcoin blockchain, but most come with trade-offs. Overpass Channels propose a
new way: we separate the act of keeping track of how much Bitcoin is “locked” in
our system (the “bridge” state) from the act of keeping track of who owns what off-
chain (the “ownership” rights). By having two separate proof systems, we achieve
strong security, high efficiency, and the ability to operate off-chain without trusting
validators. The result is a more scalable, private, and secure environment that still
relies on Bitcoin’s underlying security.

1.1 Core Contributions

This paper makes the following contributions:

1. Introduction of a parallel proof system architecture that separates bridged to-
ken state verification from ownership rights.

2. Novel floating pool mechanism for secure bridge operations with temporal se-
curity guarantees.

3. Pure ownership proof system enabling efficient off-chain transfers.

4. Detailed key management and decentralized storage implementation using thresh-
old cryptography and stealth addresses.

5. Formal mathematical framework proving the security and efficiency properties
of both systems.

6. Rigorous proof of system independence and interaction invariants.

1.2 Paper Organization

The remainder of this paper is organized as follows: Section 2 establishes the for-
mal mathematical framework for both proof systems. Section 3 details the bridge
architecture and bridged token state verification. Section 4 presents the ownership
proof system and transfer mechanics. Section 5 discusses the key management and
decentralized storage mechanisms. Section 7 analyzes the interaction between sys-
tems and global invariants. Sections 8 and 6 provide security and economic analyses
respectively. Finally, Section 10 concludes the paper.

4

2 Mathematical Framework
The protocol’s mathematical framework encompasses two independent proof systems
that operate in parallel, each optimized for its specific domain while maintaining
rigorous security properties.

Narrative Summary: This section sets up the fundamental mathematical rules
and definitions that form the backbone of Overpass Channels. We define two types
of proofs: one that represents and verifies the locked-up Bitcoin (bridge proofs), and
another that represents who owns what amount off-chain (ownership proofs). By
clearly outlining the math and security properties, we show how these two proof
systems remain independent yet combine to create a stable, trustless environment
that inherits Bitcoin’s own security.

2.1 Foundational Definitions

Definition 2.1 (Bridge State Proof). A Bridge State Proof B represents Layer
1 Bitcoin bridged token state verification:

B = (Aϵ, Vϵ, πtoken state, ϵ)

where:

• Aϵ is the current epoch’s pool address.

• Vϵ is the total value secured in the pool.

• πtoken state proves valid pool state and zero invariance.

• ϵ is the current epoch identifier.

Definition 2.2 (Value Ownership Proof). A Value Ownership Proof P represents
pure ownership rights:

P = (v, πownership, n,H)

where:

• v is the owned value amount.

• πownership proves valid ownership rights.

• n is a monotonically increasing nonce.

• H is the ownership history hash chain.

5

2.2 System Independence

Theorem 2.3 (Proof System Independence). Bridge state proofs and value owner-
ship proofs maintain complete independence:

∀B,P : Valid(B) ⊥⊥ Valid(P)

Proof. The validation conditions for bridge state and ownership proofs operate on
disjoint sets of parameters. The correctness of one does not depend on the correctness
of the other. Thus their validity is statistically independent.

2.3 Bridge System Properties

Theorem 2.4 (Bridge Security). The bridge system maintains Bitcoin security through
temporal binding:

P (compromisebridge) ≤ max(2−λ, P (break_BTC))

Proof. The bridge inherits Bitcoin’s security for the locked funds on-chain. Addi-
tionally, unpredictable epoch-based movement and cryptographic proofs ensure any
attempt to predict or compromise the pool is bounded by 2−λ, or at worst, limited
by Bitcoin’s own security.

2.4 Ownership System Properties

Theorem 2.5 (Ownership Security). The ownership system provides unconditional
security through pure mathematical proofs:

P (compromiseownership) ≤ 2−λ

independent of bridge state.

Proof. Ownership proofs rely on zero-knowledge primitives and hash chains. Attacks
require breaking strong cryptographic assumptions. Thus the probability of forging
or compromising ownership proofs is at most 2−λ.

2.5 Global State Composition

Definition 2.6 (Global State). The protocol’s global state G is defined as:

G = (Bϵ,P , I)

where:

6

• Bϵ is the current bridge state.

• P is the set of all valid ownership proofs.

• I is the set of global invariants.

Theorem 2.7 (State Consistency). The global state maintains consistency through
independent updates:

Consistent(G) ⇐⇒ Valid(Bϵ) ∧ Valid(P) ∧ ValidInvariants(I)

Proof. The global state is consistent if and only if the bridge state, the set of own-
ership proofs, and the invariants linking them (e.g., total value consistency) all hold
true. Each is independently verifiable.

3 Bridge System Architecture
The bridge system secures Layer 1 Bitcoin through a dynamic floating pool archi-
tecture and temporal security mechanisms.

Narrative Summary: The bridge system connects our off-chain world to Bitcoin’s
main blockchain. A locked pool of BTC corresponds exactly to the off-chain value
represented by Overpass. By constantly moving the pooled BTC to new addresses at
predictable epochs and verifying these moves cryptographically, the system prevents
attackers from predicting or intercepting funds, preserving Bitcoin-level security.

3.1 Floating Pool Mechanism

Definition 3.1 (Pool State). At epoch ϵ:

Poolϵ = (Aϵ, Vϵ,∆ϵ, πϵ,Mϵ)

Theorem 3.2 (Address Generation). Pool addresses are derived deterministically
but unpredictably:

Aϵ+1 = H(seedϵ ∥ Kprotocol ∥ ϵ+ 1)

Proof. By using a secure hash function and protocol keys kept secret, next epoch
addresses cannot be predicted by adversaries.

7

3.2 Epoch Management

Definition 3.3 (Epoch Structure).

ϵ = (hstart, hend, paramsϵ, σϵ)

Theorem 3.4 (Epoch Security). Epoch transitions maintain pooled BTC security:

P (compromiseϵ) ≤ min(2−λ, P (break_BTC))

Proof. Each epoch ensures funds remain secure by leveraging Bitcoin’s blockchain
properties and unpredictable address movements. Transitions maintain a high secu-
rity threshold.

3.3 Movement Protocol

Definition 3.5 (Movement Operation).

Mϵ→ϵ+1 = (txmove, πmove,∆move)

Theorem 3.6 (Movement Security). Pool movements maintain pooled BTC security:

Secure(Mϵ→ϵ+1) =⇒ Secure(Poolϵ+1)

Proof. Atomic and verifiable on-chain movements ensure that at every epoch bound-
ary, the correct amount of BTC is transferred to the next secure address.

3.4 Bridge State Verification

Definition 3.7 (Bridge Verification Circuit).

Cbridge(Poolϵ, txmove, πmove) → {0, 1}

Theorem 3.8 (Verification Soundness).

P (forgeCbridge) ≤ 2−λ

Proof. The ZK-based verification circuit ensures no invalid transitions or forged
states can pass verification with more than negligible probability.

8

4 Ownership System Architecture
The ownership system represents off-chain value purely through mathematical proofs,
enabling instantaneous, trustless transfers without third-party validation.

Narrative Summary: Here we manage who owns what off-chain. By relying solely
on cryptographic proofs, users can reorganize their holdings, split them, merge them,
or transfer them instantly, without involving a third party. This system’s proofs
ensure no extra coins are created and everyone’s balances remain correct and private.
Over time, coins become fully fungible and indistinguishable, enhancing privacy.

4.1 Value Representation

Definition 4.1 (Value Proof).

P = (v, πownership,H, n)

Theorem 4.2 (Value Independence).

Valid(P) independent of BridgeState

Proof. Ownership proofs rely on zero-knowledge arguments and hash chains, not on
bridge states.

4.2 Transfer Operations

Definition 4.3 (Transfer Operation).

T : P → (P1, P2), v = v1 + v2

Theorem 4.4 (Transfer Security).

Valid(T) =⇒ v = v1 + v2

Proof. ZK proofs ensure that value splits or merges conserve total value.

4.3 Unilateral Updates

Theorem 4.5 (Unilateral Operation). Owners can update their proofs without ex-
ternal consensus.

Proof. All necessary information is encoded in the proof, enabling unilateral updates.

9

4.4 State Verification Circuit

Definition 4.6 (Verification Circuit).

Cownership(P, T) → {0, 1}

Theorem 4.7 (Circuit Completeness). Valid proofs can always be verified, and in-
valid proofs cannot pass verification.

Proof. Zero-knowledge proofs ensure completeness and soundness.

4.5 Perfect Fungibility

Theorem 4.8 (Value Fungibility). All final proofs of the same value are indistin-
guishable from one another, ensuring perfect fungibility.

Proof. ZK operations erase historical data, leaving final proofs indistinguishable from
any other identical-value proofs.

1 struct Proof {
2 value: u64 ,
3 zk_data: Vec <u8 >, // ZK proof data
4 }
5

6 /// Assume the existence of zk_split and zk_merge functions
↪→ provided by a ZK library:

7 /// zk_split(original_proof_data , original_value , transfer_amount)
↪→ -> (sender_data , transfer_data)

8 /// zk_merge(receiver_old_data , received_data , new_value) ->
↪→ new_proof_data

9 ///
10 /// These functions interact with a zero -knowledge proving system

↪→ that ensures correctness
11 /// and privacy of value splits and merges.
12

13 fn split_proof(original: &Proof , transfer_amount: u64) -> (Proof ,
↪→ Proof) {

14 assert !(transfer_amount > 0 && transfer_amount <
↪→ original.value);

15

16 let (zk_data_sender , zk_data_transfer) =
↪→ zk_split (& original.zk_data , original.value ,
↪→ transfer_amount);

17

10

18 let sender_proof = Proof {
19 value: original.value - transfer_amount ,
20 zk_data: zk_data_sender ,
21 };
22

23 let transfer_proof = Proof {
24 value: transfer_amount ,
25 zk_data: zk_data_transfer ,
26 };
27

28 (sender_proof , transfer_proof)
29 }
30

31 fn merge_proofs(receiver_old: &Proof , received: &Proof) -> Proof {
32 let new_value = receiver_old.value + received.value;
33 let new_zk_data = zk_merge (& receiver_old.zk_data ,

↪→ &received.zk_data , new_value);
34

35 Proof {
36 value: new_value ,
37 zk_data: new_zk_data ,
38 }
39 }
40

41 fn main() {
42 let original_proof = Proof {
43 value: 100,
44 zk_data: zk_initial_proof (100) , // Assume zk_initial_proof

↪→ creates a valid starting proof
45 };
46

47 // Sender wants to transfer 30 units:
48 let (sender_updated , transfer_proof) =

↪→ split_proof (& original_proof , 30);
49

50 // Sender now holds a proof for 70. The transfer_proof (30) is
↪→ given as metadata to the receiver.

51

52 let receiver_old = Proof {
53 value: 0,
54 zk_data: zk_initial_proof (0),
55 };
56

57 // Receiver merges the 30-value transfer_proof:
58 let receiver_new = merge_proofs (& receiver_old , &transfer_proof);
59

11

60 println !("Receiver ’s new proof value: {}", receiver_new.value);
61 }

Listing 1: ZK-based splitting and merging of proofs with a hypothetical ZK library

5 Key Management and Decentralized Storage
Narrative Summary: Secure key management underpins the entire protocol. By
splitting secret keys into multiple shares and mixing in decoy shares, storing them
at stealth addresses, and reconstructing them with threshold schemes, we ensure no
single entity or point of failure. Attackers cannot identify or steal the secret because
they cannot distinguish real shares from decoys.

5.1 Secret Sharing with Decoy Shares

1 use rand::Rng;
2 use rand::rngs::OsRng;
3 use curve25519_dalek :: scalar :: Scalar;
4 use std:: collections :: HashMap;
5 use rand::seq:: SliceRandom;
6

7 // EXAMPLE RATIO
8 const TOTAL_SHARES: usize = 100;
9 const REAL_SHARES: usize = 50;

10 const THRESHOLD: usize = 30;
11

12 #[derive(Debug , Clone)]
13 struct Share {
14 index: u8 ,
15 value: Scalar ,
16 is_decoy: bool ,
17 }
18

19 fn generate_shares(secret: Scalar) -> Vec <Share > {
20 let mut rng = OsRng;
21 let mut coefficients = vec![secret];
22 for _ in 1.. THRESHOLD {
23 coefficients.push(Scalar :: random (&mut rng));
24 }
25

26 let mut shares = Vec::new();
27 for i in 1..= REAL_SHARES {

12

28 let x = Scalar ::from(i as u64);
29 let mut y = Scalar ::zero();
30 for (j, coeff) in coefficients.iter().enumerate () {
31 let mut x_pow = Scalar ::one();
32 for _ in 0..j {
33 x_pow *= x;
34 }
35 y += coeff * x_pow;
36 }
37 shares.push(Share {
38 index: i as u8,
39 value: y,
40 is_decoy: false ,
41 });
42 }
43

44 // Add decoy shares
45 for i in (REAL_SHARES + 1)..= TOTAL_SHARES {
46 shares.push(Share {
47 index: i as u8,
48 value: Scalar :: random (&mut rng),
49 is_decoy: true ,
50 });
51 }
52

53 shares.shuffle (&mut rng);
54 shares
55 }
56

57 fn reconstruct_secret(shares: Vec <Share >) -> Option <Scalar > {
58 let real_shares: Vec <Share > = shares.into_iter ().filter (|s|

↪→ !s.is_decoy).collect ();
59 if real_shares.len() < THRESHOLD {
60 return None;
61 }
62

63 let mut secret = Scalar ::zero();
64 for i in 0.. THRESHOLD {
65 let xi = Scalar ::from(real_shares[i]. index as u64);
66 let yi = real_shares[i].value;
67

68 let mut lagrange_coeff = Scalar ::one();
69 for j in 0.. THRESHOLD {
70 if i != j {
71 let xj = Scalar ::from(real_shares[j]. index as u64);
72 lagrange_coeff *= xj * (xj - xi).invert ();

13

73 }
74 }
75 secret += yi * lagrange_coeff;
76 }
77

78 Some(secret)
79 }
80

81 fn encrypt_share_for_storage(share: &Share) -> String {
82 // Simulate encryption using a random scalar key
83 let mut rng = OsRng;
84 let stealth_key = Scalar :: random (&mut rng);
85 let encrypted = share.value + stealth_key;
86 format !("stealth_key :{:?}, encrypted_value :{:?}", stealth_key ,

↪→ encrypted)
87 }
88

89 fn distribute_shares(shares: Vec <Share >) -> HashMap <u8 , String > {
90 let mut storage: HashMap <u8, String > = HashMap ::new();
91 for share in shares {
92 let encrypted = encrypt_share_for_storage (& share);
93 storage.insert(share.index , encrypted);
94 }
95 storage
96 }
97

98 fn retrieve_and_decrypt_shares(storage: &HashMap <u8, String >,
↪→ required_indices: Vec <u8 >) -> Vec <Share > {

99 // In a real system , decryption would be performed with known
↪→ keys.

100 // Here we simulate by generating dummy shares.
101 let mut rng = OsRng;
102 required_indices
103 .into_iter ()
104 .filter_map (|index| storage.get(&index).map(| _encrypted| {
105 Share {
106 index ,
107 value: Scalar :: random (&mut rng),
108 is_decoy: false ,
109 }
110 }))
111 .collect ()
112 }
113

114 fn main() {
115 let secret = Scalar ::from (42u64);

14

116 let shares = generate_shares(secret);
117 let storage = distribute_shares(shares.clone());
118 let selected_indices = vec![1, 2, 3];
119 let retrieved_shares = retrieve_and_decrypt_shares (&storage ,

↪→ selected_indices);
120 match reconstruct_secret(retrieved_shares) {
121 Some(reconstructed) => println !("Reconstructed Secret:

↪→ {:?}", reconstructed),
122 None => println !("Failed to reconstruct the secret."),
123 }
124 }

Listing 2: Secret Sharing with Decoy Shares

5.2 Stealth Addresses and Encrypted Share Storage

Definition 5.1 (Stealth Address).

Stealth Addressi = H(Pmaster ∥ ri)

1 use sha2 ::{Sha256 , Digest };
2

3 fn generate_stealth_address(master_public_key: &[u8], nonce: u64)
↪→ -> Vec <u8> {

4 let mut hasher = Sha256 ::new();
5 hasher.update(master_public_key);
6 hasher.update(nonce.to_be_bytes ());
7 hasher.finalize ().to_vec ()
8 }
9

10 fn main() {
11 let master_public_key = b"master_public_key_example";
12 let nonce = 42u64;
13 let stealth_address =

↪→ generate_stealth_address(master_public_key , nonce);
14 println !("Stealth Address: {:?}", stealth_address);
15 }

Listing 3: Stealth Address Generation

5.3 Decoy Share Obfuscation

15

1 use curve25519_dalek :: scalar :: Scalar;
2

3 fn generate_decoy_share () -> Share {
4 let mut rng = OsRng;
5 let decoy_value = Scalar :: random (&mut rng);
6 Share {
7 index: 0,
8 value: decoy_value ,
9 is_decoy: true ,

10 }
11 }
12

13 fn main() {
14 let decoy_share = generate_decoy_share ();
15 println !("Decoy Share: {:?}", decoy_share);
16 }

Listing 4: Decoy Share Generation

5.4 Reconstruction Protocol

The reconstruction protocol is decentralized and relies on the threshold secret sharing
scheme. Once enough real shares are collected, the secret can be reconstructed using
Lagrange interpolation.

5.5 Decentralized Reconstruction with Stealth Addresses

By deriving context-specific keys and employing zero-knowledge proofs, clients can
reconstruct secrets without revealing them to storage nodes.

1 use sha2 ::{Sha256 , Digest };
2 use curve25519_dalek :: scalar :: Scalar;
3

4 fn derive_context_key(global_key: &[u8], ownership_proof: &[u8],
↪→ operation_id: &[u8]) -> Vec <u8> {

5 let mut hasher = Sha256 ::new();
6 hasher.update(global_key);
7 hasher.update(ownership_proof);
8 hasher.update(operation_id);
9 hasher.finalize ().to_vec ()

10 }
11

12 fn generate_zkp(context_key: &[u8]) -> Vec <u8> {

16

13 // Assume zk_generate_proof is from a ZK library:
14 zk_generate_proof(context_key)
15 }
16

17 fn verify_zkp(proof: &[u8], context_key: &[u8]) -> bool {
18 zk_verify_proof(proof , context_key)
19 }
20

21 fn main() {
22 let global_key = b"global_secret_key";
23 let ownership_proof = b"user_proof_data";
24 let operation_id = b"withdrawal_123";
25 let context_key = derive_context_key(global_key ,

↪→ ownership_proof , operation_id);
26 let zkp = generate_zkp (& context_key);
27 let is_valid = verify_zkp (&zkp , &context_key);
28 println !("ZKP Valid: {}", is_valid);
29 }

Listing 5: Context Key and ZKP Example

6 Economic Incentives
Narrative Summary: The protocol incentivizes participants so that all roles—miners,
storage nodes, developers—are fairly rewarded. A portion of fees goes to the trea-
sury for ongoing development, another portion to miners for securing Bitcoin’s base
layer, and the remainder to storage nodes for maintaining decentralized state. This
structure ensures long-term sustainability and growth.

6.1 Fee Distribution Model

• Treasury (20%): Funds development, upgrades, community initiatives, and
maintenance of the floating address system.

• Bitcoin Miners (50%): Aligns Overpass with Bitcoin, ensuring robust Layer
1 anchoring.

• Off-Chain Storage Nodes (30%): Rewards reliable and decentralized data
storage, promoting healthy competition and decentralization.

17

6.2 Floating Address Costs and Treasury Allocation

The treasury covers operational costs associated with the floating pool mechanism
and ensures long-term stability and adaptability.

6.3 Trustless Storage Node Operation

A “battery charging” and staking mechanism ensures nodes must remain synchronized
and reliable. Underperforming nodes are automatically disconnected and replaced,
enforcing trustlessness.

6.4 Economic Sustainability

The equilibrium of incentives ensures each participant’s economic interests are aligned
with the protocol’s health. Treasury funds secure future development, miners remain
incentivized by fees, and storage nodes are rewarded for maintaining reliable state.

7 System Interaction
Narrative Summary: The bridge and ownership systems interact minimally. Their
only synchronization occurs when value moves between on-chain and off-chain realms,
ensuring that each system can focus on what it does best.

7.1 Global State Invariant

Vϵ =
∑

P∈Active

Value(P)

This invariant links the bridge value with the sum of all ownership proofs.

7.2 Synchronization Points

Synchronization is only required at deposits (moving BTC on-chain to off-chain) and
withdrawals (returning value to the Bitcoin chain).

7.3 Independent Operation

Between these synchronization events, both systems operate independently and do
not require mutual interaction.

18

8 Security Analysis
Narrative Summary: By separating concerns and relying on strong cryptography,
Overpass Channels matches or exceeds Bitcoin’s security. Any attacker must break
Bitcoin or the cryptographic proofs, both of which are extremely hard. The system’s
design ensures that compromising one part does not allow compromising the other.

8.1 Threat Model

We consider powerful adversaries but assume Bitcoin’s cryptographic and network
security holds, and that the chosen ZK proof system is secure.

8.2 Bridge System Security

P (breakbridge) ≤ max(2−λ, P (break_BTC))

8.3 Ownership System Security

P (breakownership) ≤ 2−λ

8.4 Compositional Security

Attacking both systems simultaneously is harder than attacking either alone, strength-
ening overall security.

8.5 Synchronization Security

At synchronization points, verification ensures all invariants hold, maintaining secu-
rity boundaries.

8.6 Zero-Knowledge Properties

Both systems leverage zero-knowledge proofs to ensure privacy and no leakage of
sensitive information.

19

9 Equivalence of Overpass and Native Bitcoin Secu-
rity

Narrative Summary: We prove that using Overpass Channels is effectively as secure
as holding Bitcoin directly. No extra trust assumptions are introduced. If Bitcoin is
secure, Overpass is secure.

Theorem 9.1 (Equivalence to Native Bitcoin Security).

B ≡ O

Proof. Overpass inherits Bitcoin’s security for the locked funds and relies on cryp-
tographic proofs with security levels matching or exceeding Bitcoin’s cryptographic
assumptions. Thus, it achieves equivalent security properties.

9.1 Implications of Equivalence

Users enjoy the same trust model as Bitcoin while benefiting from enhanced efficiency,
privacy, and scalability off-chain.

10 Conclusion
Overpass Channels present a novel, mathematically rigorous, and secure Layer 2
protocol for Bitcoin, achieving true off-chain value representation without sacrific-
ing Bitcoin’s trusted security model. By separating bridge state verification and
ownership proofs, integrating threshold cryptography and stealth addresses, and us-
ing zero-knowledge proofs, Overpass Channels delivers enhanced privacy, fungibility,
scalability, and efficiency. The economic incentives ensure long-term sustainabil-
ity and community-driven evolution, marking a significant advancement in Bitcoin’s
Layer 2 landscape.

Future directions include further performance optimization, deeper integration
with advanced zero-knowledge proof systems, broader interoperability, and extensive
audits. These steps will solidify Overpass Channels as a cornerstone solution for the
Bitcoin ecosystem’s evolving scalability and privacy needs.

References
[1] Ramsay, B. (2024). Deterministic Consensus using Overpass Channels in Dis-

tributed Ledger Technology. Cryptology ePrint Archive, Paper 2024/1922.

20

[2] Banerji, A. (2013). An attempt to construct a (general) mathematical framework
to model biological context-dependence. Systems and Synthetic Biology, 7(4),
221–227.

[3] Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. Re-
trieved from https://bitcoin.org/bitcoin.pdf.

[4] Antonopoulos, A. M. (2017). Mastering Bitcoin: Unlocking Digital Cryptocur-
rencies. O’Reilly Media.

[5] Ben-Sasson, E., Chiesa, A., Garman, C., Miers, I., Tromer, E., & Virza, M.
(2014). Zerocash: Decentralized Anonymous Payments from Bitcoin. In IEEE
Symposium on Security and Privacy, 459–474.

[6] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., & Maxwell, G. (2018).
Bulletproofs: Short Proofs for Confidential Transactions and More. In IEEE
Symposium on Security and Privacy, 315–334.

[7] Wang, X., & Yu, H. (2005). How to Break MD5 and Other Hash Functions. In
Advances in Cryptology – EUROCRYPT 2005.

[8] Merkle, R. C. (1987). A Digital Signature Based on a Conventional Encryption
Function. In Advances in Cryptology – CRYPTO 1987.

[9] Shamir, A. (1979). How to share a secret. Communications of the ACM, 22(11),
612–613.

[10] Goldwasser, S., Micali, S., & Rackoff, C. (1985). The knowledge complexity of
interactive proof systems. SIAM Journal on Computing, 14(3), 755–789.

[11] Boneh, D., Franklin, M., & Zhang, L. (2001). Efficient proofs of partial knowl-
edge and the discrete logarithm. Advances in Cryptology — CRYPTO 2001,
1–12.

[12] Groth, J. (2001). A verifiable secret shuffle and its application to e-voting. Ad-
vances in Cryptology — CRYPTO 2001, 75–90.

21

https://bitcoin.org/bitcoin.pdf

	Introduction
	Core Contributions
	Paper Organization

	Mathematical Framework
	Foundational Definitions
	System Independence
	Bridge System Properties
	Ownership System Properties
	Global State Composition

	Bridge System Architecture
	Floating Pool Mechanism
	Epoch Management
	Movement Protocol
	Bridge State Verification

	Ownership System Architecture
	Value Representation
	Transfer Operations
	Unilateral Updates
	State Verification Circuit
	Perfect Fungibility

	Key Management and Decentralized Storage
	Secret Sharing with Decoy Shares
	Stealth Addresses and Encrypted Share Storage
	Decoy Share Obfuscation
	Reconstruction Protocol
	Decentralized Reconstruction with Stealth Addresses

	Economic Incentives
	Fee Distribution Model
	Floating Address Costs and Treasury Allocation
	Trustless Storage Node Operation
	Economic Sustainability

	System Interaction
	Global State Invariant
	Synchronization Points
	Independent Operation

	Security Analysis
	Threat Model
	Bridge System Security
	Ownership System Security
	Compositional Security
	Synchronization Security
	Zero-Knowledge Properties

	Equivalence of Overpass and Native Bitcoin Security
	Implications of Equivalence

	Conclusion

